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Abstract

A generalized Bloch theorem for systems with line group symmetry (e.g.,
nanotubes, stereo-regular polymers, quasi-one-dimensional crystals) shows
that single-particle eigenfunctions are essentially composed of two factors: a
function which is invariant under the symmetry transformations and a function
which determines the symmetry of the state. Here we derive the representative
functions for all irreducible representations of the line groups.

PACS numbers: 61.46.Fg, 61.50.Ah, 73.22.Dj

The discoveries of various types of nanotubes [1–3] and other quasi-one-dimensional nano-
structures such as nanowires and nanosprings [4] stressed the necessity of applying line groups
in nanophysics [6].

The line groups [11] describe symmetries of systems with periodicity in one direction
only (the z-axis by convention) and due to the lack of the crystallographic restrictions there
are infinitely many such groups (in contrast to the finite number of the diperiodic and space
groups). Eighty of them can be seen as subgroups of the space groups and they are also called
rod groups [12].

The symmetry adapted basis (SAB) of the single-particle quantum state space L(R3) is a
necessary prerequisite in any quantum mechanical study. The generalized Bloch theorem for
systems with symmetry described by line groups shows that single-particle eigenfunctions are
essentially composed of two factors [13]: a function which is invariant under the symmetry
transformations and a function which determines the symmetry of the state. This paper
addresses the problem of finding representative functions for all irreducible representations of
the line groups.

After a brief reminder about the line groups, the covariant functions are derived and
explicitly incorporated into the generalized form of the Bloch theorem.

The line groups consist of symmetries of structures that are periodic along a single
direction. The periodicity of the line groups is not restricted to the translational one, but
includes generalizations to regular incommensurate structures. Namely, each line group is a
product L = ZP n of an axial point group P n (n is the order of its principal axis) and an
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infinite cyclic group of generalized translations Z, which may be either a screw axis T Q(f )

or a glide plane T c(f ), generated by (CQ|f ) (where the Koster–Seitz symbol denotes rotation
by 2π/Q around the principal axis, which is conveniently chosen as the z-axis, followed by
translation by f along the same axis) and (σv|f ), respectively.

There are infinitely many line groups and they are gathered into 13 families. Only the
groups from the first family are Abelian while the groups from the other families have a first
family group as a halving subgroup or as an index four subgroup.

Transformation � of the line group L acts on a function F(r) according to the coordinate
representation D(L) defined as

D(�)F (r)
def= F(�−1r). (1)

It is a reducible representation and each irreducible representation D(λ)(L) (of the dimension
|λ|) of L is a component of D(L) with frequency number f λ = f . A symmetry adapted basis
of L(R3) thus consists of the functions �(λ)l(r) satisfying

D(�)�
(λ)l
t (r)

def= �
(λ)l
t (�−1r) =

|λ|∑
l′=1

D
(λ)
l′l (�)�

(λ)l′
t (r), t = 1, . . . , f, l = 1, . . . , |λ|.

(2)

Index t distinguishes between f multiplets formed by covariants counted by the row index l
(with λ and t fixed).

In particular, invariants or harmonics are the functions �
(0)1
t (r) corresponding to the

identity representation D(λ=0)(�) = 1, and they form the basis of the f -dimensional subspace
L0(R

3); this subspace contains all the fixed points of the group action (1). Generally, to
each irreducible representation we associate the subspace L(λ)(R3) = ⊕lL(λ)l(R3) of L(R3),
where the f -dimensional subspaces L(λ)l(R3) are spanned by the covariants �

(λ)l
t (r) for

t = 1, . . . , f . This allows the generalization of the Bloch theorem: the subspaces L(λ)l(R3)

can be obtained multiplying L(0)(R3) by suitably chosen representative functions �
(λ)l
00 (r),

which are independent of t.
The aim of this paper is to present the representative functions for each irreducible

representation of all line groups.
It is convenient to use cylindrical coordinates, as the line group transformations do not

affect the radial coordinate ρ. This means that SAB functions are factorized in the form
R(ρ)�(λ)l(ϕ, z). Here, only the functions �(λ)l(ϕ, z), defined on the cylinder, determine
the transformation rules of the total function. Consequently, the symmetry adapted basis in
the space of the functions over cylinder is to be found, and then the symmetry adapted basis
in the total space L(R3) is obtained by multiplying this by any basis of radial functions.
Altogether, the generalized Bloch form of the symmetry adapted basis in the total space is

�
(λ)l
IKM(r) = RM

IK(ρ)�
(λ)l
00 (ϕ, z)HM

K (ϕ, z), (3)

where �
(λ)l
00 (ϕ, z) are representative functions looked for, while HM

K (ϕ, z) and RM
IK(ρ) are

harmonics and radial basis. The indices M and K together count the different appearances
of D(λ)(L) in the space of the functions over cylinder, i.e. they take the role of t in this
space (of course, the frequency number in this space is again the same for all the irreducible
representations, f λ

C = fC). Further, index I, for fixed M and K counts a basis of the functions
RM

IK(ρ) in the space of the functions over ρ. Note that the representative functions �
(λ)l
00 (ϕ, z)

for fixed λ form themselves a multiplet corresponding to D(λ)(L).
A basis of the cylindrical invariants has explicitly been found recently [13]. Covariant

functions, i.e. the functions transforming according to the nonsymmetric irreducible
representations, will be tabulated here.
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The first family line groups are Abelian having thus only one-dimensional irreducible
representations [9] which are classified by helical (k̃ and m̃) quasi-momenta:

k̃Am̃

((
Cr

q

∣∣f )t
Cs

n

) = ei(k̃f t+m̃ 2π
n

s), k̃ ∈
(

−π

f
,
π

f

]
, m̃ ∈

(
−n

2
,
n

2

]
. (4)

Only for commensurate groups (when Q = q/r , [13]) linear momenta (k and m) can be
used to get another classification:

kAm

((
Cr

q

∣∣f )t
Cs

n

) = ei(kf t+m 2π
Q

tm 2π
n

s)
, k ∈

(
−π

a
,
π

a

]
, m ∈

(
−q

2
,
q

2

]
. (5)

With helical quantum numbers (for the linear ones the procedure is quite analogous), the
condition (2) reduces to the system of the eigenequations (for each generator one independent),
with eigenvalues being matrix elements of the irreducible representations:

D
(
Cr

q

∣∣f )
�

(k̃m̃)
00 (ϕ, z) = eik̃f �

(k̃m̃)
00 (ϕ, z) D(Cn)�

(k̃m̃)
00 (ϕ, z) = ei2π m̃

n �
(k̃m̃)
00 (ϕ, z). (6)

This way the subspace of the covariants with fixed quasi-momenta is completely determined,
and the representative functions may be taken in the form:

�
(k̃m̃)
00 (ϕ, z) = e−im̃ϕ+i( 2πm̃

Qf
−k̃)z

, �
(km)
00 (ϕ, z) = e−i(mϕ+kz). (7)

Multiplying representative functions by harmonics one gets complete SAB �
(km)
KM (ϕ, z) =

�
(km)
00 (ϕ, z)HK

M (ϕ, z), where HK
M (ϕ, z) is the first family harmonic. Note that each �

(km)
KM is

itself a representative function and �
(km)
00 is taken by convention.

All other line group families, as non-Abelian, have two- and/or four-dimensional
irreducible representations as well. The corresponding representative functions are constructed
from the first family ones, with then the help of the inductive procedure. Namely, the first
family line groups are the halving subgroup for the families 2–8, while the later are the
halving subgroups for the families 9–13. Therefore, conditions (6) are to be complemented
by one (for the families 2–8) or two (families 9–13) equations. The results are listed in
table 1, and here we only briefly discuss the procedure used in the calculations.

Note that according to definition (2), the exact form of covariants depends on irreducible
representations. Hence, it is important that we use the representations derived by induction
from the first family line groups [10, 11]. This means that all the covariants satisfy conditions
(6), with the additional one (2) for the additional generators.

These additional conditions, depending on the irreducible representation considered,
reduce to one of the two general forms, related to the inductive construction [14] of the
irreducible representations D(λ)(L) of L from the irreducible representations 
(μ)(L′) of L′.
In fact the representations of L′ (and L) belong to one of the two disjoint types. In the first
one, there are 
(μ)(L′) which give two representations D(μ±)(L) of the same dimension as

(μ)(L′), both of them having the same restriction D(μ±)(L′) = 
(μ)(L′) on the subgroup:

D(μ±)(�′) = 
(μ)(�′), D(μ±)(g) = ±Z(∀ �′ ∈ L′), (8)

where Z is a matrix satisfying Z−1
(μ)(�′)Z = 
(μ)(g−1�′g) and Z2 = 
(μ)(g2).
For the representations of the second type, a pair of 
(μ)(L′) and 
(μ′)(L′) (satisfying

(μ′)(�′) = 
(μ)(g−1�′g)), gives a single irreducible representation D(μ)(L) of L with the
doubled dimension, with restriction on L′ being sum D(μ)(L′) = 
(μ)(L′) ⊕ 
(μ′)(L′):

D(μ)(�′) =
(


(μ)(�′) 0
0 
(μ′)(�′)

)
, D(μ)(g) =

(
0 
(μ)(g�′g)


(μ)(�′) 0

)
(�′ ∈ L′). (9)

Quantum number ± is related to the additional generator g. We call it parity quantum
number �g and by convention for the representations of the second type �g is set to zero.
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Table 1. Representative covariant functions of the line groups. For each family L(F ) its irreducible
representations are listed in the first column, and the corresponding representative function in the
second one.

IR Representative function

1 T Q(f ) ⊗ Cn

kAm e−i(mϕ+kz)

k̃Am̃ e−im̃ϕ+i( 2πm̃
Qf

−k̃)z

2 T (a)S2n

kA
�h
m e−imϕ

(
ei( 2π

a −k)z + �U e−i( 2π
a −k)z

)

kEm

e−imϕ−ikz

ei mπ
n e−imϕ+ikz

3 T (a)Cnh

kA
�h
m e−imϕ

(
ei( 2π

a −k)z + �h e−i( 2π
a −k)z

)

kEm

e−imϕ−ikz

e−imϕ+ikz

4 T 1
2n

(
a

2

)
Cnh

0A
�h
m e−imϕ

(
ei( 4π

a −k)z + �h e−i( 4π
a −k)z

)

kEm

e−imϕ−ikz

e−imϕ+ikz

5 T Q(f )Dn

kA
�U
m ei(n−m)ϕ−i( 2πn

Qf
+k)z + �U e−i(n−m)ϕ+i( 2πn

Qf
+k)z

kEm

e−imϕ−ikz

eimϕ+ikz

k̃A
�U
m̃ ei(n−m̃)ϕ−i( 2π(n−m̃)

Qf
+k̃)z + �U e−i(n−m̃)ϕ+i( 2π(n−m̃)

Qf
+k̃)z

k̃Em̃

e−im̃ϕ−i(− 2πm̃
Qf

+k̃)z

eim̃ϕ+i(− 2πm̃
Qf

+k̃)z

6 T (a)Cnv

kA/Bm e−ikz(ei(n−m)ϕ + �v e−i(n−m)ϕ)

kEm

e−imϕ−ikz

eimϕ−ikz

7 T ′ ( a

2

)
Cn

kA/Bm e−ikz(ei(n−m)ϕ + �v e−i(n−m)ϕ)

kEm

e−imϕ−ikz

eimϕ−ikz

8 T 1
2n

(
a

2

)
Cnv

kA/Bm e−ikz(ei(2n−m)ϕ + �v e−i(2n−m)ϕ)

kEm

e−imϕ−ikz

eimϕ−ikz

k̃A/B0 ei(k̃− 2π
a )z(einϕ + �v e−inϕ)

4
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Table 1. (continued).

IR Representative function

k̃Em̃

e−im̃ϕ+i( 2πm̃
na −k̃)z

eim̃ϕ−i( 2πm̃
na −k̃)z

9 T (a)Dnd

kA/B
�U

0 einϕ+i( 2π
a −k)z + �U e−inϕ−i( 2π

a −k)z

+ �v e−inϕ+i( 2π
a −k)z + �U�v einϕ−i( 2π

a −k)z

kE
�h
m

e−imϕ
(

ei( 2π
a −k)z + �h e−i( 2π

a −k)z
)

eimϕ

(
ei( 2π

a −k)z + �h e−i( 2π
a −k)z

)

kE n
2

cos mϕ e−ikz

sin mϕ e−ikz

kE
�v
m

e−ikz(ei(n−m)ϕ + (−1)�v e−i(n−m)ϕ)

eikz(ei(n−m)ϕ + �v e−i(n−m)ϕ)

kGm

e−imϕ−ikz

eimϕ−ikz

eimϕ+ikz

e−imϕ+ikz

10 T ′ ( a

2

)
S2n

kA/B�U
m ei(n−m)ϕ+i( 2π

a −k)z − �U�v ei πm
n +i ka

2 e−i(n−m)ϕ+i( 2π
a −k)z

+ �U ei πm
n ei(n−m)ϕ−i( 2π

a −k)z − �v ei ka
2 e−i(n−m)ϕ−i( 2π

a −k)z

0Em

cos mϕ

sin mϕ

πEm

e−i π
a z

ei π
a z

kE
�h
m

e−imϕ
(

ei( 4π
a −k)z + �hei ka

2 e−i( 4π
a −k)z

)

eimϕ

(
ei( 4π

a −k)z + �hei ka
2 e−i( 4π

a −k)z
)

kE
�v
m

e−ikz
(

ei(n−m)ϕ + �v ei 2πm
n e−i(n−m)ϕ

)

eikz

(
ei(n−m)ϕ + �v ei 2πm

n e−i(n−m)ϕ

)

kGm

e−imϕ−ikz

eimϕ−ikz

e−imϕ+ikz

eimϕ+ikz

11 T (a)Dnh

kA/B�h
m ei(n−m)ϕ+i( 2π

a −k)z + �v e−i(n−m)ϕ+i( 2π
a −k)z

+ �h ei(n−m)ϕ−i( 2π
a −k)z + �h�v e−i(n−m)ϕ−i( 2π

a −k)z

kE
�h
m

e−imϕ
(

ei( 2π
a −k)z + �h e−i( 2π

a −k)z
)

eimϕ

(
ei( 2π

a −k)z + �h e−i( 2π
a −k)z

)

kE
�v
m

e−ikz(ei(n−m)ϕ + �v e−i(n−m)ϕ)

eikz(ei(n−m)ϕ + �v e−i(n−m)ϕ)

5
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Table 1. (continued).

IR Representative function

kGm

e−imϕ−ikz

eimϕ−ikz

e−imϕ+ikz

eimϕ+ikz

12 T ′ ( a

2

)
Cnh

0A/B�h
m ei(n−m)ϕ+i 4π

a z + �v e−i(n−m)ϕ+i 4π
a z+

+ �h ei(n−m)ϕ−i 4π
a z + �h�v e−i(n−m)ϕ−i 4π

a z

kE
�h
m

e−imϕ
(

ei( 4π
a −k)z + �h e−i( 4π

a −k)z
)

eimϕ

(
ei( 4π

a −k)z + �h e−i( 4π
a −k)z

)

kE
�v
m

e−ikz(ei(n−m)ϕ + �v e−i(n−m)ϕ)

eikz(ei(n−m)ϕ + �ve−i(n−m)ϕ)

πEm

e−ikz cos(n − m)ϕ

eikz cos(n − m)ϕ

kGm

e−imϕ−ikz

eimϕ−ikz

e−imϕ+ikz

eimϕ+ikz

13 T 1
2n

(
a

2

)
Dnh

0A/B�h
m ei(2n−m)ϕ+i 4π

a z + �U e−i(2n−m)ϕ−i 4π
a z

+ �v e−i(2n−m)ϕ+i 4π
a z + �U�v ei(2n−m)ϕ−i 4π

a z

0E
�h
m

e−imϕ(ei 4π
a z + �he−i 4π

a z)

eimϕ(ei 4π
a z + �he−i 4π

a z)

kE
A/B
m

e−ikz(ei(2n−m)ϕ + �ve−i(2n−m)ϕ)

eikz(ei(2n−m)ϕ + �ve−i(2n−m)ϕ)

πE
�U

n/2

eimϕ+ikz + �U e−imϕ−ikz

e−imϕ+ikz + �U eimϕ−ikz

kGm

e−imϕ−ikz

eimϕ−ikz

e−imϕ+ikz

eimϕ+ikz

For simplicity, we first analyze groups of the families 2–8, when the halving subgroup
is of the first family, then the representation label μ corresponds to the pair of momenta k̃

and m̃, and the whole space L is decomposed as L = ⊕k̃m̃L(k̃m̃) onto covariant subspaces of
L′ = L(1).

When D(k̃m̃)(L′) is of the first type, then L(k̃m̃) is obviously invariant under the additional
generator g, meaning that L(k̃m̃) = L(k̃m̃+) ⊕ L(k̃m̃−). Therefore, the role of the additional
generator is to separate these subspaces, i.e. to determine SAB (of the whole group) in L(k̃m̃).
This is performed with the group projector [8]: P (k̃m̃±) = X

∑
�∈L D(k̃m̃±)∗(�)D(�), which is

reduced in the space L(k̃m̃) to P (k̃m̃±) = Y (1 ± Z) (as the covariants are to be normalized at
the end, the constants X and Y are not important). Thus, the representative functions have the
form

�(k̃m̃±) = �
(k̃m̃)
t ± Z�

(k̃m̃)
t . (10)

6
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Note that when Z = 1 the simplest choice �
(k̃m̃)
t = �

(k̃m̃)
00 has vanishing projection by P (k̃m̃±).

Therefore, for uniqueness of notation and compact presentation, we usually use �
(k̃m̃)
01 or �

(k̃m̃)
10

for building the supergroup invariants.
When D(k̃m̃)(L′) is of the second type, then D(g) maps L(k̃m̃) into another space L(k̃′m̃′),

which gives rise to doubling of the dimension of the resulting irreducible representation
D(μ)(L) of L. While the projector

X
∑
�∈L

D
(μ)∗
11 (�) = X

(∑
�′∈L′ 
(μ)∗(�′) 0

0 0

)

leaves �
(k̃m̃)
t invariant, the transfer operator

X
∑
�∈L

D
(μ)∗
21 (�) = X

(
0 0∑

�′∈L′ 
(μ)∗(�′) 0

)

maps �
(k̃m̃)
t into �

(k̃′m̃′)
t = D(g)�

(k̃m̃)
t . Thus, it is natural to take the simplest representative

doublet �
(k̃m̃)
00 and D(g)�

(k̃m̃)
00 .

In the case of the groups from the families 9–13, the procedure is completely analogous,
except that L′ is one of the groups from the families 2–8, having besides k̃ and m̃ also the
parity quantum number from the induction of the first step.

The results obtained, listed in table 1, together with the line group invariants [13] complete
the task of finding SAB for quasi-one-dimensional systems. Any function �(λ)l(r) can now be
easily and accurately represented as an expansion over the corresponding line group SAB (3):

�(λ)l(r) =
∑
IKM

αIKM�
(λ)l
00 (ϕ, z)RM

IK(ρ)HM
K (ϕ, z), (11)

where the sum is over all allowed values of I,M and K, while the amplitudes are scalar
products: αIKM = (

�
(λ)l
IKM,�(λ)l

) = ∫
�

(λ)l∗
IKM(ρ, ϕ, z)�(λ)l(ρ, ϕ, z)ρ dρ dϕ dz and the

harmonics are tabulated within the previous article of the series [13].
Derived functions describe various potentials of the systems with line group symmetry

displaced according to a normal mode. Let d(μ)tμm be the displacement vector of the normal
mode corresponding to the irreducible representation D(μ) (where tμ = 1, . . . , fμ and fμ is a
frequency number of D(μ)) in the dynamical representation of the system, i.e. tμ counts different
frequencies of the modes transforming according to D(μ)); this means that the coordinate of
the ith atom is ri = r0

i + d
(μ)tμm

i (equilibrium is at r0; d(μ)tμm is time dependent). Then the
potential V (r) produced by the system is a function of type (11), i.e. the mth component of the
multiplet corresponding to D(μ). Usually, this potential is the sum over atoms of the atomic
potentials v: V (r) = ∑

i v(|r − ri |).
As an illustration we consider a carbon nanotube (6, 0) with the line group L(13) =

T 1
12(2.13Å)C6 symmetry. Atomic Lenard–Jones potential [15]

v(r) = −18.5426

|r|6 +
29000.4

|r|12
(12)

is responsible for the interaction with the outer wall in the double-walled nanotube. The outer
wall is approximately of radius ρ0 = 2.35 Å, and we calculate the potential V (ρ0, ϕ, z) during
the vibration of the mode with frequency 763.901 cm−1. This is an alternating twisting mode
(each monomer of 12 atoms is circumferentially rotated oppositely to the adjacent monomers,
figure 1) corresponding to the representation 0B

−
6 , i.e. its quantum numbers are k = 0,m = 6

(or k̃ = π/f, m̃ = 0), �U = 1,�v = �h = −1. We calculate numerically expansion of
V (ρ0, ϕ, z) over SAB with representative function sin(2πz/f ) sin(6ϕ) (see table 1). It turns

7
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Figure 1. Elementary cell (with two monomers) of carbon nanotube (6, 0). Arrows denote atomic
displacements corresponding to the mode 0B

−
6 .

Figure 2. Coefficients αM
K of the expansion (11) of the potential V (ρ0, ϕ, z) as a function of the

elongation ξ of the mode 0B
−
6 . Besides the several significant coefficients, all the others are with

negligible absolute value (gray lines close to α = 0 axis). Since α−2
1 = α2

−1 = −α2
1 , α2

3 = α−2
−3 =

−α2
−3, α

1
−4 = α−1

4 = −α1
4 and α0

0 = −α0
2 , only the positive coefficients are plotted. Also, only

positive elongations are presented, as the potential is invariant under reversing the displacement
direction, i.e. αM

K (ξ) = αM
K (−ξ).

out that only several bases function significantly contributes (figure 2) for all elongations ξ .
In fact, the coefficients αM

K (ξ) of all but the three harmonics are almost constant (independent
of the elongation ξ ): α±2

±1 are in absolute value 50 times greater than α±2
±3 and α±4

±1, which
are further by one or two orders of magnitude greater than the coefficients of the other
harmonics. Only the coefficients α0

±0 = −α0
0 significantly vary with elongation (for two

orders of magnitude). Therefore, only this component of potential is relevant for inter-wall
interaction along this degree of freedom. Note also that if Coulomb interaction is taken for v,
this type of calculation can significantly facilitate the calculation of electron–phonon matrix
elements.

To summarize, we showed that a covariant function of a line group can be factorized
to the product of a representative function determining the transformation properties and an
invariant function. Besides, representative functions determined by the symmetry solely, can
be tabulated a priori. Such a generalization of the Bloch theorem to the full line group
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symmetry can straightforwardly be extended to the more dimensional crystals. Further, as
the bases of invariants, i.e. harmonics, have been found for the all line groups [13] it is easy
now to compose the total symmetry adapted basis in the quantum mechanical state space
of any (commensurate or incommensurate) quasi-1D crystal (e.g., stereo-regular polymers
or nanotubes) from the representative functions and harmonics. Such a basis significantly
improves quality and efficiency of the density functional calculations as the basis set of
functions used is optimal.
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